A New Numerical Method for Solving Two-dimensional Variable-order Anomalous Sub-diffusion Equation
نویسندگان
چکیده
The novelty and innovativeness of this paper are the combination of reproducing kernel theory and spline, this leads to a new simple but effective numerical method for solving variable-order anomalous sub-diffusion equation successfully. This combination overcomes the weaknesses of piecewise polynomials that can not be used to solve differential equations directly because of lack of the smoothness. Moreover, new bases of reproducing kernel spaces are constructed. On the other hand, the existence of any ε-approximate solution is proved and an effective method for obtaining the ε-approximate solution is established. A numerical example is given to show the accuracy and effectiveness of theoretical results.
منابع مشابه
New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation
A physical-mathematical approach to anomalous diffusion is based on a generalized diffusion equation containing derivatives of fractional order. In this paper, an anomalous sub-diffusion equation (ASub-DE) is considered. A new implicit numerical method (INM) and two solution techniques for improving the order of convergence of the INM for solving the ASub-DE are proposed. The stability and conv...
متن کاملImplicit RBF Meshless Method for the Solution of Two-dimensional Variable Order Fractional Cable Equation
In the present work, the numerical solution of two-dimensional variable-order fractional cable (VOFC) equation using meshless collocation methods with thin plate spline radial basis functions is considered. In the proposed methods, we first use two schemes of order O(τ2) for the time derivatives and then meshless approach is applied to the space component. Numerical results obtained ...
متن کاملA New Implicit Finite Difference Method for Solving Time Fractional Diffusion Equation
In this paper, a time fractional diffusion equation on a finite domain is con- sidered. The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first order time derivative by a fractional derivative of order 0 < a< 1 (in the Riemann-Liovill or Caputo sence). In equation that we consider the time fractional derivative is in...
متن کاملAn Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کاملTwo-dimensional advection-dispersion equation with depth- dependent variable source concentration
The present work solves two-dimensional Advection-Dispersion Equation (ADE) in a semi-infinite domain. A variable source concentration is regarded as the monotonic decreasing function at the source boundary (x=0). Depth-dependent variables are considered to incorporate real life situations in this modeling study, with zero flux condition assumed to occur at the exit boundary of the domain, i.e....
متن کامل